Event Data Models

An Introduction and Survey

Jim Kowalkowski
Marc Paterno

Introduction

What is an Event Data Model?

Why 1s one useful?

What are common features?

Classes and Instances

e Instance
 aunit that combines a specific state (data) and the
functions used to manipulate it (methods)
e (Class

« atype that defines related instances
d scrlli?tlon of what the instances have in common

ypes of data, methodefinitions)

* the body of code that manipulates the data in the
Instances

e A program can have multiple instances of the
same class, each with different values

Event M odels

Parameterized Classes

e Class template
» A description for how to write a class

» Describes a family of classes that share
common characteristics

 Instantiating a class template causes the
compiler to write a class; one can then
make instances of the class
std: :vector — class template
std: :vector<float> — instantiated class
std::vector<float> vf = — object, or instance

Event M odels

What 1s an Event Data Model?

* An Event Data Model (EDM) provides a
mechanism for managing data related
to an physics event within a program

e An EDM is not:

e a persistency mechanism

e an I/O mechanism
* a file format

... although it is related to all of these
things

Event M odels

Why is an EDM Useful?

o Tt allows for independence of
reconstruction modules
e This assumes a modular framework

* Modules communicate only via the EDM
true whether modules are C++ or Fortran

* Modules can be developed and maintained
independently — critical for maintainability
of a large body of code

Event M odels

Why is an EDM Useful?

e Can 1solate users from need to 1nteract
with persistency mechanism

e iImplementation of streaming

* Can isolates users from I/O mechanism
* details of reading files

» Can isolates users from changes in file
formats

Event M odels

General Features

* Some features are shared by all EDMs
» Event class, collection of data for one event

* Many classes representing various “pieces”
of an event, and collections thereof:
tracking hits; calorimeter energies
tracks, candidate particles (electron, tau, jet, ...)

« Navigation classes
efficient location of specific “pieces”
associations between “pieces” of the Event

« Metadata classes

Event M odels

Common Needs

e More than one algorithm can produce
each kind of output
» need to be able to hold, and uniquely

1dentify, the output of a specific algorithm
e.g. cone algorithm jets and KT algorithm jets

A single algorithm can be configured with
different parameters; need to distinguish

e.g. R=0.7 cone jets and R=0.4 cone jets

Event M odels

Common Needs

e Many different types of reconstructed
“pleces” need to be stored in the event

o All these types make up “the EDM”
e Continuous need to add new types of

“pleces” to the event

» 1t 1s impossible to predict them all at the
outset of the experiment

* the EDM grows as the need arises

e Sometime we call the core classes “the
EDM”

Event M odels

Identifying BTeV Requirements

* “You can get at the data, whatever
language you speak”
e In the trigger? offline?
e “Data structures should have fixed
maximum Sizes”

» goal 1s speed — time not wasted allocating
and freeing memory

 can be achieved in different manners,
allowing one to retain a flexible EDM

» Full data access for Fortran, no copying

Event M odels 11

Mission Impossible?

Trigger code must access data without
requiring any copying of data

. It must be possible to write triggers in
Fortran 77

Why not both?

Fortran common blocks are disconnected
from an object-based EDM

Tremendous difficulty mapping even
simple C++ structures into Fortran

Event M odels

Before Designing an EDM

e Need to start with requirements
 required features
o attractive features
e priorities

» Possible to modify an existing EDM, or
design from scratch

* An overview of some existing data
models may help illustrate the range of
possibilities ...

Event M odels

The Survey

A tour through the major
features of the CDF, DO, Gaudi
and MiniBooNE event models

* A more detailed document on this topic shall
be available, at:

http://www-cdserver.fnal.gov/
public/cpd/aps/EDMSurvey.htm

e This survey is an extract of the tables from the
current version of that document

* Please contact the authors with any
corrections

e paterno@fnal.gov & jbk@fnal.gov

Event M odels

Overview

e The CDF and D@ EDMs are in active
use by those experiments, respectively

e The Gaudi EDM 1is under development
by the LHCb experiment

e The MiniBooNE EDM is in active use,

but still undergoing development.
MiniBooNE uses both C++ and Fortran

e Features viewed from C++: MB
e Features viewed from Fortran: MBF

Event M odels

Access to the Event

How does a user gain access to an Event?
« CDF passed into functions; also global
« DO passed into functions
» Gaudi search in global registry
« MB passed into functions
« MBF globally available

e Global access will have some influence
on ability to handle multiple events

Event M odels

Event Multiplicity

During development, testing, and
simulation, it is sometimes useful to
handle more than one Event at a time

Can we have more than one Event?
« CDF Yes, but use of global causes trouble
DO Yes

* Gaudi Not yet; plans are to access “named”
instances

« MB Yes
« MBF No; too hard to do in Fortran

Event M odels

Definition of Event Data Object

* The Event is a container of objects
» raw data; MC particles; GEANT hits
* trigger results, reconstructed objects

e Each experiment has its own terminology for
the constituents of an Event
« CDF storable objects
« DO chunks
 Gaudi data objects
- MB chunks

o Often, the things the Events collects are
themselves collections (of hits, tracks, jets ...)

Event M odels 19

Event Interface

What is the “look and feel” of an Event?
« CDF collection with “generic” iterator
« DO “database” with type safe queries

* Gaudi filesystem-like hierarchy of named
nodes

« MB associative array of type sate nodes

« MBF subroutine calls to load common
blocks

Event M odels

Adding to the Event

How 1s a new object added to an Event?
« CDF ownership passed (design), no copy
« DO ownership passed (design), no copy

« Gaudi ownership passed (convention), no

CoOpy
« MB ownership passed (design), no copy

« MBF copy from common block to C++
object, then as above

e Relying on convention is error prone!

Event M odels

Mutability of Event Data

Can objects in the Event be modified?

» Desire for reproducibility argues this
should be very tightly controlled

« CDF no, except that collections can grow
* DO no

* Gaudi yes

« MB under development

« MBF under development

Event M odels

Inheritance

Is inheritance from a base class needed?
« CDF from TObject via StorableObject

must implement a streamer; requires CDF
macro, to write some of the interface required

by ROOT
« D@ from do_Object via AbsChunk

requires D@ macro, to write some of the
interface required by DOOM; requires
possession of various IDs

Event M odels

Inheritance (cont'd)

* Gaudi from DataObject

must be able to return a globally unique ID for
the class.

 MB none
Should be a POD; current usage of ROOT
violates this

« MBF none

Any properly padded common block, no strings
allowed

Event M odels

EDO Multiplicity

Is it possible to access more than one
instance of an EDO class at one time?

e Everyone needs this

» CDF tracks: needs more than one set,
several competing algorithms

e DO raw data: need more than one in
simulation

 This ability generates a requirement for
labelling EDOs.

Event M odels

EDO Multiplicity (continued)

Is it possible to access more than one
instance of an EDO class at one time?

e CDF yes
DO yes
Gaudi yes
MB yes
MBF no

Event M odels

Labelling

How are objects in an Event labelled?
e CDF

Unique object ID, configuration parameter set
ID, descriptive string, class version, and class
name

e DO

Unique object ID, configuration parameter set
ID, parent object IDs, geometry & calibration
IDs, and string labels

Event M odels

Labelling (cont'd)

e Gaudi

Class ID, descriptive string with hierarchical
path

- MB

Descriptive string and class name

« MBF

Descriptive string

Event M odels

Query Interface

How does a user specify which EDO he
wants?

 CDF

Custom iterators with optional selectors
specifying a combination of labels

e DO

User specified criteria based on object data or
specific labelling information; multiple objects
returned

Event M odels

Query Interface (cont'd)

* Gaudi
string path information
- MB

Class name/descriptive string; single object
returned

« MBF

Descriptive string; single object put into
common block

Event M odels

Query Results

In what form is the result returned?
 CDF

Custom iterator; read-only access to the object
they refer to and traversal to next object

e DO

Collection of handles that allow read-only
access to the objects

Event M odels

Query Results (cont'd)

e Gaudi

Bare pointer to the base class object or to the
object itself

- MB

Read-only pointer to the object
e MBF

Populated common block, a copy of the event
data

Event M odels

Multiple Matches

What happens if more than one EDO
matches the query?

« CDF 1iterator moves through the matches

« D@ collection of matches is returned

* Gaudi not applicable

« MB no multiple matches implemented

« MBF no multiple matches allowed

Event M odels

Support for Associations

What support is given for making
associations between EDOs?
e Bare pointers are unsuitable

hen a pointed-to object is deleted
hen only parts of an Event are written

hen reading an Event

e “Smart pointers” of various sorts are the
usual solution

» class templates with special behavior

Event M odels

Parameterized Classes

e Class template
» A description for how to write a class

» Describes a family of classes that share
common characteristics

 Instantiating a class template causes the
compiler to write a class; one can then
make instances of the class
std: :vector — class template
std: :vector<float> — instantiated class
std::vector<float> vf = — object, or instance

Event M odels 35

Support for Associations

 CDF

Special link classes that are converted from
pointer to id and back automatically; links exist
for objects with collection associations

e DO

Special link classes that are converted from
pointer to id and back semi-automatically; link
classes exist for top-level EDOs and for items

within collections

Event M odels

Support for Associations (cont'd)

e Gaudi

Special link classes that re converted from
pointer to id automatically; links exists for
DataObjects or vectors

« MB

currently no infrastructure support

Event M odels

Restrictions on Associations

 In all cases, C++ object models disallow
(by convention) use of bare pointers

e Associations are one-way, from “newer”
objects to “older” objects

» enforced for CDF, DO; convention for
Gaudi

 Complex associations must be
implemented in distinct EDOs

Event M odels

Persistency Impositions

What requirements are placed on EDOs
by the persistency mechanism?

« CDF macros, streamers, TObject
* D@ macros, do_Object

» Gaudi all data public, or available with
get/set methods

e« MB macros

« MBF C struct, padded to map to common
block

Event M odels

I/0 Format

What file format is used?
« CDF ROOT

« DO DSPACK is standard, others are
possible

e Gaudi Objectivity and ROOT
- MB ROOT

« MBF ROOT

e Multiple I/O formats are available for
those designs that have isolated the
persistency mechanism from the EDM

Event M odels

Schema Evolution

* Mentioned several times as important
* New classes are added — easy!
 Existing classes are changed — harder

* Widely different degrees of automation

« CDF 1if statements in streamers

« DO automated, using DoOM data
dictionary

* Gaudi if statements in converters

« MB automated, using ROOT data
dictionary

Event M odels

Translation Mechanism

What is done to write out/read in an
object?
e CDF

Hand written code to write object's data into
the ROOT buffer; transient representation

typically differs significantly from the persistent
form

e DO

Automated by data dictionary; copies data to
the Fortran bank structure, then to output.

Rarely used activate/deactivate can do simple
transient mapping.

Event M odels

Translation Mechanism (cont'd)

e Gaudi

Converter external to the class reads state out
into the persistency package buffers; copy the
data objects into objectivity objects, then write
the those objects

- MB

Automated by data dictionary, copies data to
ROOT bufters.

Event M odels

Where to go from here?

Questions for BTeV

e Are your requirements agreed upon?
e If not how will consensus be reached
» If so, are they clearly expressed?

 What process will be used to move from

requirements to a solution?
e Concrete milestones

e Time estimates

» Continuous review of both to keep project
on track

Event M odels

